
CS 4530: Fundamentals of Software Engineering
Lesson 2.4 The Object Scale

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson
• At the end of this lesson, you should be able to

• Demonstrate the basics of UML class diagrams
• Explain the significance of the different kinds of

associations in UML
• Explain what the reviewer of a design might

want to know that UML leaves out

This is the scale of UML diagrams

UML in the context of this course
• There are numerous tools for translating from UML

to code (or code fragments), and vice versa, BUT
• We are interested in UML as a human-to-human

language.
• In general, we expect your UML diagrams to "look

like" UML diagrams, but we are not interested in
every last detail of the notation.

• We just want your diagrams to communicate the
important things, with detail as necessary.

It will not be satisfactory to
simply rely on some UML-
generation tool. That will
only demonstrate that you
haven't thought hard about
the problem 

3 Levels of UML

Level 0: The Types (aka: Classes
and Interfaces)

Level 1: Relationships between
types (aka "associations")

Level 2: Attributes and
Methods (aka Properties)

Level 0: Types (Interfaces and Classes)

6

Level 1: Relationships
• Some different kinds of relationships

• implements
• SimpleClock implements AbsClock

• depends-on (or refers-to)
• ClockClient depends-on AbsClock

• subclass-of (or inherits-from)
• (use alternate impl of ClockFactory)

• Associations

7

"Implements" relationship

8

"Depends on" relationship

9

export class ClockClient {
constructor (private theclock:AbsClock) {}
getTimeFromClock ():number {return this.theclock.getTime()}

}

"inherits-from" relationship in UML

10

Associations
• An association is a relationship between two objects

that indicates a link or dependency between them.
• Examples:

• a portfolio is associated with an investor
• every sale is associated with the sales representatives that

worked on the sale
• every student is associated with a transcript

• An associations typically has a name that indicate its
meaning in the real world

• An association typically has a cardinality that indicates
whether it is a 1:1 relation, a 1:many relation, etc.

11

Associations

12

Each teacher teaches zero or
more courses.

Each course has exactly one
instructor

Each student is enrolled in
zero or more courses

Each course has zero or
more students enrolled

Associations in Code

13

class Teacher {
coursesTaught : Course[]

}

class Course {
instructor : Teacher
roster : Student[]

}

class Student {
classesTaking : Course[]

}

// INVARIANT:
// c.instructor = t iff c is in t.coursesTaught
// s in c.roster iff c is in s.classes

Properties of Associations:
Cardinality (or Multiplicity)
• The relationship between two entities has an

associated cardinality or multiplicity
• multiplicity is expressed with specific numbers or ranges,
• e.g.: 1:1..2 or 1:1..N

• Examples:
• A student is associated with exactly one transcript (1:1)

• One student, one transcript.
• Every course is taught by a professor, but a professor must

teach at least one course (1:1..*)
• One course, one professor. One professor, one or more courses.

• An address may have a zip code (1:0..1)
• One address, zero or one zip code

14

Notation for Cardinality in Associations

15

Any given instructor teaches 1 course.
Any given course is associated with one instructor.

Instructor Course

1 1

teaches ►

Any given instructor teaches 1 or more courses.
Any given course is associated with one instructor.

Instructor Course

1 1..*

teaches ►

Any given instructor teaches at least 1 and up to 10 courses.
Any given course is associated with one instructor.

Instructor Course

1 1..10

teaches ►

If no cardinality is specified, it defaults to 1.Instructor Course

1..*

teaches ►

Note: the solid triangle indicates how a
human should interpret the relationship
("Instructor teaches Course"). It does
not indicate navigability (from an
instructor, can you find the list of courses
they teach?)

Associations should reflect something about
the real world

16

Partial Translation:

We have discovered that a
loan can be paid out in
multiple disbursements.
There does not appear to be
any limit to the number of
disbursements. In addition,
each loan is given to a single
student. Apparently,
students cannot share loans.

What world are we modeling?
• Sometimes the world we are modeling is not the

real world, but the world of entities in our program

17

Discussion Question: Which
parts of this chart
represent things in the
real world, and which
parts represent things
that only live in our
computers?

Associations in Code, again

18

class Teacher {
coursesTaught : Course[]

}

class Course {
instructor : Teacher
roster : Student[]

}

class Student {
classesTaking : Course[]

}

// INVARIANT:
// c.instructor = t iff c is in t.coursesTaught
// s in c.roster iff c is in s.classes

Discussion Question: What
real-world things do these
classes and associations
represent?

Discussion: what do Car and Wheel
represent?
• A car has 3–4 wheels

19

The solid arrow indicates
the way we should read
"has" (a car "has" wheels,
not wheels "has" a car).

Discussion Question: What
should the navigability of
this association be?
Should we be able to get
from a Car to the Wheels
that it has? Should we
be able to get from Wheel
to Car?

Interlude: CRC Cards are a lighter-weight
alternative to UML for initial design

• Class
• the name of a "thing" in your program
• could be a class, interface, type, etc.

• Responsibilities
• the main job of this "thing" in the program
• should be simple: Remember the Single

Responsibility Principle
• Might be “Manages <some piece of state>”

• Collaborator
• Any class or interface that this class needs in order

to fulfill its responsibilities
• Goal is to make sure that each class has enough

information to fulfill its responsibilities.

• Good for early-stage planning and design
20

CRC Cards in Practice
• Typically used during early analysis, especially during team

discussions.
• Low-tech
• 4x6 index cards
• They aren't pretty.
• They aren't something you ever want to show your customers or

even your own upper management.
• Each card is a concrete symbol for a thing in the program

during discussion
• Kind of like thinking on a whiteboard, but...
• Cards can be stacked, moved, etc. to illustrate proposed

relationships
• If you come out of a group meeting and your CRC cards aren't

smudged, dog-eared, with lots of scratched-out bits, you probably
weren't really trying.

21

https://www.cs.odu.edu/~zeil/cs330/live/website/Slides/crc/page/crc.html

Back to UML:
Level 2: Attributes, Methods, and Names
• A Class is drawn as a three-part box

containing:
- class name (required)
- list of attributes with names and

types (optional)
- list of methods with argument lists

(optional)
• Attributes and methods may be

annotated with "+" for public and "-"
for private.

• Components with special roles may be
annotated with "stereotypes", which
are written with <<...>>.

22

Name

Attribute1 : type1
Attribute2 : type2

method1 (signature) : type1
method2 (signature) : type2

Attributes
• The attributes of a class are roughly those members

(or "instance variables" or "properties", depending
on what language you are writing in) whose values
are either

• scalars ("simple" attributes)
• arrays or lists of scalars ("multivalued" attributes)
• simple structs (e.g. dates or names)

• Class members whose values are full-fledged
objects (of this or some other class) are usually
represented in UML as relationships.

23

In TypeScript, functions
are values, so for us an
attribute could have a
value that is a function.
Your real-world boss may
or may not agree.

Methods
• If there are many methods, they may not fit in a

UML diagram.
• Alternatives:

• Tables
• Javadoc, etc.

24

This is the level where we specify names
• If you are going to write code, you need to know

the names of the classes, methods, etc.

25

JSDoc
• You put structured

comments in the
code

26

And the tool turns it into web pages

27

Here’s our design again, with names.
My file imports ClockFactory from './ClockFactory.ts'
When I create an object that needs a clock, I get a copy of the master clock by
calling the static method ClockFactory.instance() , and the new object registers
itself with the master clock by calling c.register(this) .
Whenever the master clock changes, it updates my object by sending it a
notify(t:Time) message. It also sends my object a similar update message
when anyone registers with it, so my object will always have the latest time.
Pat is responsible for ClockFactory.ts . Pat and I agreed on this protocol; Pat
agreed that their clock factory will have an instance() method that returns the
master clock, and that the master clock will have a register() method that I can
use to register my object.
In return, I agreed that my object will have a notify(t:Time) method that the
master clock can use to notify it about the updated time.

28

Review: Learning Objectives for this Lesson
• At the end of this lesson, you should be able to

• Demonstrate the basics of UML class diagrams
• Explain the significance of the different kinds of

associations in UML
• Explain what the reviewer of a design might

want to know that UML leaves out

	CS 4530: Fundamentals of Software Engineering�Lesson 2.4 The Object Scale
	Learning Goals for this Lesson
	This is the scale of UML diagrams
	UML in the context of this course
	3 Levels of UML
	Level 0: Types (Interfaces and Classes)
	Level 1: Relationships
	"Implements" relationship
	"Depends on" relationship
	"inherits-from" relationship in UML
	Associations
	Associations
	Associations in Code
	Properties of Associations:�Cardinality (or Multiplicity)
	Notation for Cardinality in Associations
	Associations should reflect something about the real world
	What world are we modeling?
	Associations in Code, again
	Discussion: what do Car and Wheel represent?
	Interlude: CRC Cards are a lighter-weight alternative to UML for initial design
	CRC Cards in Practice
	Back to UML:�Level 2: Attributes, Methods, and Names
	Attributes
	Methods
	This is the level where we specify names
	JSDoc
	And the tool turns it into web pages
	Here’s our design again, with names.
	Review: Learning Objectives for this Lesson

