CS 4530: Fundamentals of Software Engineering
Lesson 2.4 The Object Scale

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

* At the end of this lesson, you should be able to
 Demonstrate the basics of UML class diagrams

* Explain the significance of the different kinds of
associations in UML

e Explain what the reviewer of a design might
want to know that UML leaves out

This is the scale of UML diagrams

AudioMedia

<interface> ‘

<interface>
<(directly inplemented)>
ManagedAudioMedia

<interface>
MediaDataManager
<interface>
<(for convenience)>
WithMediaData + getMediaData(uid : String) : MediaData
+ getUidofMediaData(data : Mediabata) : String
+ addHediaData(data : MediaData
jpdgsHedranatall L Hed aData + getlistofUids() : List<String>
arnitiatizec + detachMediaData(data : MediaData)
+ setMediaData(data : MediaData) } deletemediopata(usd : Strin
{Exceptions: MethodParaneterIsiull} + copyMediaData(data : MediaData) : MediaData
. + copyMediaData(uid : String) : MediaData
P s + getlistofHanagedHediaData() : List<HediaData>
. T
Ve - [
s ~ _Composition [Composition
s c I
- EN Oy-n]
- <interfaces e (e vatarroviderHanager
. <(for convenience)s MediaData g
- WithAudioMediaData
e T oetian T string + getUidofDataProvider (provider : DataProvider) : String
Managedhedia + getAudioMediaData() : AudioMediaData + getlame() : Strin N ZEEDEESP{°;ldE'é“If S 8 25;5Pr°;1d§'
nitiatizes © Sethane(newNane : String) * detachbatabrovider (Ad : String)
+ setAudioMediaData(data : AudioMediaData) T eemy 0! ediapata O C e I Ty 8 I
e & O O e et orefY) B QAT + getListofHanagedDataProviders() : List<DataProvider>
- + deleteUnusedDataProviders(
- »
- | ~
- ~ .
o 'Composition ! “ Aggregation - Composition N
! ! N . N
NS | ~ L
<interface> | ~ / N .
AudioMediaData | N
N ’ N
<Abstract> N s .
+ getNumberofChannels() : int aciiada faAnsErcEINpL 1yn e N
+ sethunber0fChannels (newNunberofChannels : int) D = <interface>
+ getBitDepth() : int - — A <(directly inplemented)>
+ setBitDepth(nevtitdepth : int) ostiacts jpetapeoviden FileDataProvidertanager
+ getUsedpataProviders() : List<DataProvider>
+ getsampleRate() : int Sy
+ setSampleRate(newsanp leRate : int) # mediabataCopy() : MediaDataAbstractImpl + getUid() : string
+ getByteRate() : int Ao AL R — + getbataFilebirectory() : String
+ getPCHLength() : int o P T § LI § Ceefle N gstuui et uzt S tstrean + moveDataFiles(newDataFileDir : String, deleteSource : boolean, overwriteDestDir : boolean
+ getAudioDuration() : TimeDelta S : M gslsts‘f) P! + getDataFileDirectoryFullPath() : String
* gethudiobatal) : InputStrean + Xukout(destination : XnlDatanriter) : boolean + copy() : DataProvider * gethlewbatarileRelpath (extension : String
+ getAudioData(clipBegin : Time) : InputStream o S o e + getListofManagedFileDataProviders() : List<FileDataProviders
+ getAudioData(clipBegin : Time, clipEnd : Time) : InputStream & o) § 53 + setDataFileDirectoryPath(newPath : String
+ appendAudioData(pcnbata : InputStream, duration : TimeDelta) LRI R &
<abstract>
+ insertAudioData(pcnbata : InputStream, insertPoint : Time, duration : TimeDelta) S o ey 8 (X FerEEy) § Casiee -
+ replaceAudioData(pcnData : InputStream, replacePoint : Time, duration : TimeDelta) a ' <
+ removeAudio(clipBegin : Time) v -
+ removeAudio(clipBegin : Time, clipEnd : Time) \ -
. -
N v PR
~Composition
N 1
N v -
~ \ -
AudioMediaDataAbstractInpl \ B -
L -
S) & T erace e
B nebetta <(directly implemented)>
+ getAudioData(clipBegin : Time, clipEnd : Time) : InputStream FilebataProvider
<Abstract>
& CECC IR EpIRAT) § HrSert MErRne 5 Fim, (i §) T getbatarilenetativerath 0 1 String
+ replaceAudiobata(pcnbata : InputStream, replacePoint : Time, duration : TimeDelta) < (EOE TGN § Sm
<Abstract>
+ renoveAudio(clipBegin : Time, clipEnd : Time
<Abstract>
audiohediaDataCopy() : Audiohediabata
WavAudioMediabata
audiohediaDataCopy() : Audiohediabata
+ getAudioData(clipBegin : Time, clipEnd : Time) : InputStream
+ getAudioDuration() : TineDelta
+ insertAudioData(pcnData : InputStream, insertPoint : Time, duration : TimeDelta
+ renoveAudio(clipBegin @ Time, clipEnd : Time
+ replaceAudioData(pcnData : InputStream, replacePoint : Time, duration : TimeDelta
+ ValueEquals(other : MediaData) : boolea
+ XukIn(source : XmlDataReader) : boolea
+ Xukout (destination : XwlDataWriter) : boolean
+ getUsedDataProviders() : List<DataProvider>
+ getListofUsedDataProviders() : List<DataProvider>
+ getXukNamespaceURI() : String
+ getXuklLocalName() : String
+ setMediaDataFactory (factory : MediaDataFactory

UML in the context of this course

* There are numerous tools for translating from UML
to code (or code fragments), and vice versa, BUT

e We are interested in UML as a human-to-human
language.

* In general, we expect your UML diagrams to "look
like" UML diagrams, but we are not interested in
every last detail of the notation.

* We just want your diagrams to communicate the
important things, with detail as necessary.

I+t will ot be satisfactory to
simply rely on some UML-
geveration tool. That will
ovly demonstrate that you
haven't thought hard about
the problem ©

3 Levels of UML

Level O: The Types (aka: Classes
and Interfaces)

Level 1: Relationships between

types (aka "associations")

Level 2: Attributes and
Methods (aka Properties)

Level O0: Types (Interfaces and Classes)

<<interface>> <<interface>>
AbsClock AbsClockFactory

Clockl Clock2 Clock3 ClockFactoryl | | ClockFactory2 | | ClockFactory3

Level 1: Relationships

* Some different kinds of relationships
* implements
* SimpleClock implements AbsClock
e depends-on (or refers-to)
* ClockClient depends-on AbsClock

* subclass-of (or inherits-from)
* (use alternate impl of ClockFactory)

e Associations

"Implements” relationship

<<interface>>
AbsClock

Clockl

Clock2

Clock3

<<interface>>
AbsClockFactory

— — —— — — —

ClockFactoryl

ClockFactory?2

ClockFactory3

"Depends on" relationship

export class ClockClient {

constructor (private theclock:AbsClock) {}
getTimeFromClock ():number {return this.theclock.getTime()}

ClockClient

<<interface>>

AbsClock
AN
T 1T T T T~)
| | |
Clockl Clock2 Clock3

"inherits-from" relationship in UML

<<interface>>
AbsClockFactory

A\

ClockFactorySuperClass

T

|

ClockFactorylasSubClass ClockFactory2asSubClass

10

Associations

e An association is a relationship between two objects
that indicates a link or dependency between them.

* Examples:

* a portfolio is associated with an investor

* every sale is associated with the sales representatives that
worked on the sale

* every student is associated with a transcript

e An associations typically has a name that indicate its
meaning in the real world

* An association typically has a cardinality that indicates
whether it is a 1:1 relation, a 1:many relation, etc.

11

Associations

teaches 0.."

Teacher Course

instructor

Each teacher teaches zero or
more courses.

Each course has exactly one
instructor

enrolled-in

0..* oster 0 Student

Each student is enrolled in

Zero or more courses

Each course has zero or
more students enrolled

12

Associations in Code

Teacher

teaches 0.
>

class Teacher {

}

coursesTaught :

instructor

-

Course

enrolled-in

-
0..*
roster

0 * Student

g

class Course {

Course[]

// INVARIANT:
// c.instructor =

instructor : Teacher

roster :

Student][] }

class Student {

classesTaking

t iff ¢ is in t.coursesTaught
// s in c.roster iff ¢ is in s.classes

: Coursel]

13

Properties of Associations:
Cardinality (or Multiplicity)

* The relationship between two entities has an
associated cardinality or multiplicity
* multiplicity is expressed with specific numbers or ranges,

* eg.: 1:1.20r1:1..N

* Examples:
e A student is associated with exactly one transcript (1:1)
* One student, one transcript.

* Every course is taught by a professor, but a professor must
teach at least one course (1:1..%)

* One course, one professor. One professor, one or more courses.

* An address may have a zip code (1:0..1)
* One address, zero or one zip code

14

Notation for Cardinality in Associations

Instructor

teaches »

Course

Instructor

teaches »

Course

Instructor

1.

teaches »

10

Course

Instructor

1.

teaches »

Course

1.*

Any given instructor teaches 1 course.
Any given course is associated with one instructor.

Any given instructor teaches at least 1 and up to 10 courses.
Any given course is associated with one instructor.

Any given instructor teaches 1 or more courses.
Any given course is associated with one instructor.

If no cardinality is

Note: the solid triangle indicates how a
hawman should interpret the relationship
("Instructor teaches Course"). I+ does
vot indicate navigability (from av
mstructor, can you find +he list of courses
they teach?)

15

Associations should reflect something about
the real world

Loan

is paid out in =

Disbursement

Partial Translation:

amount
interest reate

a.-

is funded by

¥

1.%

loan id -

Account

account number
balance
restrictions

..'\

is given to =

\:{Ed pient

1.*

amount
date

1

Student

class
name

We have discovered that a
loan can be paid out in
multiple disbursements.
There does not appear to be
any limit to the number of
disbursements. In addition,
each loan is given to a single
student. Apparently,
students cannot share loans.

16

What world are we modeling?

* Sometimes the world we are modeling is not the

real world, but the world of entities in our program

<<interface>>
TemperatureSensor

+getTemperature() : number

TemperatureManitor

maxTemp, minTemp:Temperature

<<interface>>
IAlarm

.

AN AN

—

Y

‘ SensorLocationMap
Refrig nnnnnnnnnnnnnn r 41
| 0. locationMap:
LA Map<TemperatureSensor,Location>
Oven
CandyThermometer Location

models
Sensor-Location
map

Y

+soundAlarm(): void
+stopAlarm(): void

Discussion Question: Which
parts of this chart
represevt things in the
real world, and which
parts represent things
that ovly live in our
computers?

17

represent?
teaches 0.7 enrolled-in
> -

Teacher : Course [0..% Student

. Instructor roster 0.7

b=

class Teacher { class Course { class Student {

coursesTaught : Course[] instructor : Teacher classesTaking :

}

Associations in Code, again

// INVARIANT:
// c.instructor =

Piscussion Question: What
real-world things do +hese
classes and associations

roster : Student[] }

t iff ¢ is in t.coursesTaught
// s in c.roster iff ¢ is in s.classes

Course[]

18

Discussion: what do Car and Wheel

represent?

e A car has 3—4 wheels

Car

—

has #
3..4
Wheel
Tmm—

The solid arrow indicates
the way we should read
"Was" (a car "nas" wheels,
not wheels "has" a car).

Discussion Question: What
should the navigability of
this association be?
Should we be able +o get

from a Car to the Wheels
that it has? Should we
be able +o get from wheel
to Car?

19

Interlude: CRC Cards are a lighter-weight
alternative to UML for initial design

Class
* the name of a "thing" in your program

* could be a class, interface, type, etc.

Class Name Responsibilities
* the main job of this "thing" in the program
* should be simple: Remember the Single
Responsibility Principle
Responsibilities Collaborators

* Might be “Manages <some piece of state>”"

Collaborator
* Any class or interface that this class needs in order

to fulfill its responsibilities

* Goal is to make sure that each class has enough
information to fulfill its responsibilities.

Good for early-stage planning and design

20

CRC Cards in Practice

* Typically used during early analysis, especially during team
discussions.
* Low-tech
* 4x6 index cards
* They aren't pretty.
* They aren't something you ever want to show your customers or
even your own upper management.

e Each card is a concrete symbol for a thing in the program
during discussion

* Kind of like thinking on a whiteboard, but...

* Cards can be stacked, moved, etc. to illustrate proposed
relationships

 If you come out of a group meeting and your CRC cards aren't
smudged, dog-eared, with lots of scratched-out bits, you probably
weren't really trying.

https://www.cs.odu.edu/~zeil/cs330/live/website/Slides/crc/page/crc.html

21

Back to UML.:
Level 2: Attributes, Methods, and Names

* A Classis drawn as a three-part box
containing:

- class name (required)

Name

- list of attributes with names and Attribute, : type,
. Attribute, : type,
types (optional)

- list of methods with argument lists
(Optional) method, (signature) : type,

method, (signature) : type,
* Attributes and methods may be
annotated with "+" for public and "-"
for private.

 Components with special roles may be
annotated with "stereotypes", which
are written with <<...>>.

22

Attributes

* The attributes of a class are roughly those members
(or "instance variables" or "properties”, depending
on what language you are writing in) whose values
are either

 scalars ("simple" attributes)
e arrays or lists of scalars ("multivalued" attributes)
* simple structs (e.g. dates or names)

e Class members whose values are full-fledged
objects (of this or some other class) are usually
represented in UML as relationships.

Iwn TypeScript, functions
are values, so for us av
attribute could have a
value that is a function.
Vour real-world boss may
or may not agree.

Methods

* If there are many methods, they may not fit in a
UML diagram.

e Alternatives:
e Tables
* Javadoc, etc.

24

This is the level where we specify names

* If you are going to write code, you need to know
the names of the classes, methods, etc.

25

JSDocC

22
23
24
25
26
27
28
29
38
31
32
33
34
35
36
37
38
39
48
a1
42
43

45
46
47

* @callback TilemapFilterCallback

* @param {Phaser.Gamelbjects.Game0bject} wvalue - An object found in the filtered area.

* @param {number} index - The index of the object within the array.

* @param {Phaser.Gamedbjects.GameQbject[]} array - An array of all the objects found.
3
* @return {Phaser.Game0bjects.Gamelbject} The object.
*f
J,n':-icni

* @callback TilemapFindCallback

* @param {Phaser.Gamedbjects.GameQbject} wvalue - An object found.
* @param {number} index - The index of the object within the arrav.

* @param {Phaser.Gamedbjects.GameQbject[]} array - &n array of all the ocbjects found.

* @return {boolean} " true” if the callback should be invoked, otherwise “false™.
*

_I,n'=-2=$
* @classdesc
*# A Tilemap is a container for Tilemap data. This isn't a displav object, rather, it holds data
* agbout the map and allows you to add tilesets and tilemap layers to i1t. A& map can have one or

* more tilemap layvers, which are the display objects that actually render the tiles.

*# The Tilemap data can be parsed from a Tiled JS0N file, a C5V file or a 2D array. Tiled is a free

* You put structured

comments in the
code

26

And the tool turns it into web pages

FHASSIM Namespaces- Classes~ Events~ GameObjecis~ Physics~ §

Class: Tilemap

Phaser.Tilemaps. Tilemap

A Tilemap is a container for Tilemap data. This isn't a display object, rather, it holds data about the map and allc
add tilesets and tilemap layers to it. A map can have one or more tilemap layers, which are the display objects t
actually render the tiles.

The Tilemap data can be parsed from a Tiled JSON file, a CSV file or a 2D array. Tiled is a free software packai
specifically for creating tile maps, and is available from: http://mww. mapeditor.org

As of Phaser 3.50.0 the Tilemap API now supports the following types of map:

1. Orthogonal
2. 1sometric

3. Hexagonal
4. Staggered

Prior to this release, only orthogonal maps were supported.

Another large change in 3.50 was the consolidation of Tilemap Layers. Previously, you created either a Static o
Tilemap Layer. However, as of 3.50 the features of both have been merged and the API simplified, so0 now there
the single TilemapLayer class.

A Tilemap has handy methods for getting and manipulating the tiles within a layer, allowing you to build or modi

27

Here’s our design again, with names.

My file imports ClockFactory from './ClockFactory.ts'

When | create an object that needs a clock, | get a copy of the master clock by
calling the static method ClockFactory.instance() , and the new object registers
itself with the master clock by calling c.register(this) .

Whenever the master clock changes, it updates my object by sending it a
notify(t:Time) message. It also sends my object a similar update message
when anyone registers with it, so my object will always have the latest time.

Pat is responsible for ClockFactory.ts . Pat and | agreed on this protocol; Pat
agreed that their clock factory will have an instance() method that returns the
master clock, and that the master clock will have a register() method that | can
use to register my object.

In return, | agreed that my object will have a notify(t:Time) method that the
master clock can use to notify it about the updated time.

Review: Learning Objectives for this Lesson

* At the end of this lesson, you should be able to
 Demonstrate the basics of UML class diagrams

* Explain the significance of the different kinds of
associations in UML

e Explain what the reviewer of a design might
want to know that UML leaves out

	CS 4530: Fundamentals of Software Engineering�Lesson 2.4 The Object Scale
	Learning Goals for this Lesson
	This is the scale of UML diagrams
	UML in the context of this course
	3 Levels of UML
	Level 0: Types (Interfaces and Classes)
	Level 1: Relationships
	"Implements" relationship
	"Depends on" relationship
	"inherits-from" relationship in UML
	Associations
	Associations
	Associations in Code
	Properties of Associations:�Cardinality (or Multiplicity)
	Notation for Cardinality in Associations
	Associations should reflect something about the real world
	What world are we modeling?
	Associations in Code, again
	Discussion: what do Car and Wheel represent?
	Interlude: CRC Cards are a lighter-weight alternative to UML for initial design
	CRC Cards in Practice
	Back to UML:�Level 2: Attributes, Methods, and Names
	Attributes
	Methods
	This is the level where we specify names
	JSDoc
	And the tool turns it into web pages
	Here’s our design again, with names.
	Review: Learning Objectives for this Lesson

